Lead Transformation to Pyromorphite by Fungi

نویسندگان

  • Young Joon Rhee
  • Stephen Hillier
  • Geoffrey Michael Gadd
چکیده

Lead (Pb) is a serious environmental pollutant in all its chemical forms [1]. Attempts have been made to immobilize lead in soil as the mineral pyromorphite using phosphate amendments (e.g., rock phosphate, phosphoric acid, and apatite [2-5]), although our work has demonstrated that soil fungi are able to transform pyromorphite into lead oxalate [6, 7]. Lead metal, an important structural and industrial material, is subject to weathering, and soil contamination also occurs through hunting and shooting [8, 9]. Although fungi are increasingly appreciated as geologic agents [10-12], there is a distinct lack of knowledge about their involvement in lead geochemistry. We examined the influence of fungal activity on lead metal and discovered that metallic lead can be transformed into chloropyromorphite, the most stable lead mineral that exists. This is of geochemical significance, not only regarding lead fate and cycling in the environment but also in relation to the phosphate cycle and linked with microbial transformations of inorganic and organic phosphorus. This paper provides the first report of mycogenic chloropyromorphite formation from metallic lead and highlights the significance of this phenomenon as a biotic component of lead biogeochemistry, with additional consequences for microbial survival in lead-contaminated environments and bioremedial treatments for Pb-contaminated land.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lead mineral transformation by fungi

Pyromorphite (Pb5(PO4)3Cl), the most stable lead mineral under a wide range of geochemical conditions [1], can form in urban and industrially contaminated soils [2] [3] [4] [5]. It has been suggested that the low solubility of this mineral could reduce the bioavailability of lead, and several studies have advocated pyromorphite formation as a remediation technique for lead-contaminated land [3]...

متن کامل

Phosphatase-mediated bioprecipitation of lead by soil fungi.

Geoactive soil fungi were examined for their ability to release inorganic phosphate (Pi ) and mediate lead bioprecipitation during growth on organic phosphate substrates. Aspergillus niger and Paecilomyces javanicus grew in 5 mM Pb(NO3)2-containing media amended with glycerol 2-phosphate (G2P) or phytic acid (PyA) as sole P sources, and liberated Pi into the medium. This resulted in almost comp...

متن کامل

Model Development and Simula- Tion of in Situ Stabilization in Lead-contaminated Soils

370 MODEL DEVELOPMENT AND SIMULATION OF IN SITU STABILIZATION IN LEAD-CONTAMINATED SOILS Z. Shi and L.E. Erickson 105 Durland Hall, Department of Chemical Engineering, Kansas State University, Manhattan, KS 66506; Phone: (785) 532-4323, Email: [email protected]; Phone: (785) 532-4313, Email: [email protected] ABSTRACT Stabilization and remediation of lead-contaminated soils have received considerable ...

متن کامل

Pb remobilization by bacterially mediated dissolution of pyromorphite Pb5(PO4)3Cl in presence of phosphate-solubilizing Pseudomonas putida

Remediation of lead (Pb)-contaminated sites with phosphate amendments is one of the best studied and cost-effective methods for in situ immobilization. In this treatment, a very stable mineral, pyromorphite Pb5(PO4)3Cl, is formed. Several studies propose to improve this treatment method with the addition of phosphate-solubilizing bacteria (PSB). The effect of bacteria on solubilization of pyrom...

متن کامل

Occurrence of phosphatic corrosion products on bronze swords of the Warring States period buried at Lijiaba site in Chongqing, China

Corrosion products on three bronze swords found in tombs dating from the Warring States period at Lijiaba site, Yunyang county, Chongqing were characterized by Raman and X-ray fluorescence spectroscopies. The major corrosion products were cuprite, malachite, cerussite and cassiterite, along with the copper and lead phosphates, libethenite and pyromorphite. The presence of libethenite and pyromo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Current Biology

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2012